Термостат на PIC контроллере

Терморегулятор на микроконтроллере PIC16F628 с датчиком температуры DS1820

Особенность конструкции: Индикация на ЖК — дисплей текущей температуры. Возможность управления нагревательным элементом или другим мощным внешним прибором. Возможность работы в режиме термостата.

Термостат на PIC контроллере

Сердцем схемы является микроконтроллер PIC16F628, поддерживающий постоянный обмен информацией с цифровым термометром DS1820 по протоколу 1-Wire, а также обрабатывает и анализирует эти данные и выводит ее на ЖК дисплей. В качестве дисплея используется модуль 16х2 MT16S2H фирмы «МЭЛТ»

Блок питания можно собрать самостоятельно на стабилизированное напряжение на 5 вольт. Чтоб узнать как запрограммировать датчик температуры DS1820 кликните мышкой на картинку выше с надписью терморегулятор схемы

Регулятор мощности с фазовым управлением симистором на микроконтроллере PIC16F84A

егулятор предназначен для плавного управления мощностью активнойнагрузки, питающейся от сети переменного тока 220 вольт частотой 50 Гц.Мощность нагрузки зависит от типа применяемого симистора. В основуметода управления положен принцип фазового регулирования моментавключения симистора, включенного последовательно с нагрузкой. Фото регулятора представлены на риснках :В момент включения мощность на нагрузке нарастает плавно, что удобно,если регулятор будет использоваться для регулирования яркости лампыосвещения. Вообще область применения регулятора самая широкая.

Основнымэлементом   регулятора является микроконтроллер PIC16F84A.По входу RB0 микроконтроллера организовано прерывание в момент переходасетевого напряжения через ноль. Перепад на этом выводе формирует узелна оптопаре U1 (АОУ110Б). От момента прерывания программно организованазадержка включения симистора, которая меняется в определённых пределах.На светодиодном индикаторе это выглядит как регулирование мощности от 0до 99%.

Схема регулятора мощностипредставлена на рисунке :

Погрешность соответствия показаний индикатора и действительной мощностиподводимой к нагрузке вполне достаточная для применения регулятора длябытовых целей. Кнопки  S1  и  S2 служат дляувеличения и уменьшения мощности соответственно. В подпрограмме опросакнопок организовано несколько режимов, удобных в пользовании, приоднократном нажатии изменение на единицу значения, при долгом нажатиибыстрое изменение и очень быстрое.     Узел управления симисторомсостоит из элементов U2, VD3, R5, стандартное схемное решение,оптотиристор U2 (АОУ103В) обеспечивает гальваническую развязку и спомощью диодного моста VD3 (W08) управление симистором VS1.       Схема питается от сети черезтрансформатор T1. Далее напряжение выпрямляется диодным мостом VD2,часть напряжения поступает на оптопару  U1, для формированияперепада перехода сетевого напряжения через ноль, остальная часть черездиод VD1 на микросхему стабилизатора IC1, которая стабилизируетнапряжение до 5 вольт. Элементы С1, С2, С7 служат для сглаживанияпульсаций сетевого напряжения.

Печатные платы в формате LAY:печатная плата PicPowerплата управлениясемистором

Прошивка для микроконтроллера PIC16F84A в HEX формате :PicPower.rar  Та-же прошивка в формате программы ProgCode :  PicPower.sfr  

Автор конструкции:  Юрий Стрижаков

↑ Пишем холодильную программу для МК

Начинаем продумывать логику программы, а она довольно сложная. Мне даже в начале разработки, после пары дней кумеканья, пришлось стереть всё и писать код заново, но предварительно составив блок-схему логики работы программы. С блок-схемой стало гораздо проще писать «поэму». Общая логика работы программы описана ниже на рисунке.

Термостат на PIC контроллере
Блок-схема работы основной части программы

Тут не указана процедура опроса кнопки, т.к. она происходит постоянно на всех этапах работы программы. Во время периодического опроса датчика, а это каждые 3 секунды, происходит проверка исправности датчика температуры. В случае потери связи с датчиком, программа перейдёт в аварийный режим, когда вызывается подпрограмма таймера работы/отдыха компрессора. Для возврата в нормальный режим, необходимо будет исправить связь с датчиком температуры и выключить/включить устройство.

Термостат на PIC контроллере
Блок-схема работы программы в аварийном режиме

Данная подпрограмма является копией той, что работала на подносе в начале статьи, так что предыдущие труды прошли не зря.

Прошивка и исходники, как всегда, в подвале статьи! Что касается фьюзов, то они все сняты, кроме CKSEL1, т.е. микроконтроллер настроен на работу от внешнего кварца на 4 МГц.

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

Рис. 3. Схема терморегулятора №1

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор  R2  изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.

Рис. 4. Схема терморегулятора №2

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в  тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Электрические котлы

Достаточно распространённая альтернатива газовым и твердотопливным котлам. Масса преимуществ, большой КПД, но большой срок окупаемости. Подключение простое, как и у газовых котлов, но без подвода холодной воды. Предусмотрено регулирование температуры и защита от перегрева.

Механический таймер котла

При помощи простого механического таймера электрического котла возможны три варианта запуска системы центрального отопления :

  1. Котёл выключен;
  2. Котёл подаёт тёплую воду;
  3. Котёл включается и выключается в установленное время.

Механические таймеры обычно имеют большой круглый циферблат с 24-часовой шкалой в центральной части. Поворачивая диск, можно установить нужное время, а затем оставить его в таком положении. Включение котла будет происходить в нужное время. Внешняя часть состоит из набора вкладок 15-минутного периода, которые вставлены для удобства регулировки работы и настройки режимов. Возможна экстренная перенастройка, которая выполняется при включённом в сеть котле.

Популярные статьи  Распечатайте на формате А4 клетку, линейку, нотную тетрадь и многое другое!

Механические таймеры просты в настройке, но при этом котёл всегда включается и выключается в то же время каждый день, а это может не удовлетворить хозяев, если семья большая, и банные процедуры проводятся несколько раз в день в разное время.

Пропуск периодов

Альтернативным методом управления мощностью является метод пропуска периодов.

Для регулирования тока через нагрузку симистор пропускает только часть периодов сетевого напряжения. Пропуск периодов позволяет решить проблему электромагнитной совместимости, так как включение симистора происходит в момент перехода сетевого напряжения через нуль.

Режим пропуска периодов применим для управления резистивными нагрузками, но не применим для осветительных приборов, так как вызывает мигание ламп накаливания.

Для обоих методов управления мощностью необходимо знать, когда сетевое напряжение переходит через нуль. Одним из способов является подача переменного сетевого напряжения непосредственно на вход микроконтроллера через последовательный резистор в несколько МОм. Благодаря наличию защитных диодов на портах микроконтроллеров Microchip PIC напряжение будет ограничено: сверхунапряжением питания, снизу — уровнем GND.

Существует и альтернативный способ, который используется в данной реализации.

Рассмотрим схему реализации блока управления нагрузкой на микроконтроллере Microchip PIC10F204, имеющем встроенный аналоговый компаратор (рис. 3). Для питания микроконтроллера используется бестрансформаторный резистивный источник питания.

Термостат на PIC контроллере
Рис. 3. Принципиальная схема устройства

Более подробно о расчетах таких источников можно узнать из статьи «AN954 Transformerless power supplies: resistive and capacitive» на сайте компании. Для детектирования момента перехода сетевого напряжения через нуль достаточно использовать сигнал, снятый с анода стабилитрона. Сигнал подается через токоограничительный резистор непосредственно на вывод порта микроконтроллера.

Схема управления током через нагрузку не содержит обратной связи, для установки мощности используется переменный резистор, то есть получен электронный аналог термостата. В качестве нагрузки используется резистивный нагреватель. При сетевом питании 220 В получаем действующее значение тока порядка 5 А, однако симистор необходимо выбрать с запасом рабочего тока и установить на теплоотвод. В схеме используется BTA208-600F фирмы Philips.

Для оцифровки значения переменного резистора, устанавливающего мощность, используется интегрирующий преобразователь на конденсаторе С6. Для стабилизации задающего напряжения применен стабилитрон D4 на 3 В. В начале цикла преобразования вывод контроллера GP1 настраивается на выход и выдается высокий уровень. Этим уровнем заряжается конденсатор. Далее вывод конфигурируется как вход компаратора, конденсатор начинает разряжаться через переменный резистор (время разряда пропорционально значению резистора). Значение на выводе сравнивается с внутренним опорным напряжением 0,6 В. В момент, когда напряжение на конденсаторе упадет ниже этого уровня, срабатывает компаратор, и фиксируется время разряда.

По формуле можно рассчитать значение переменного резистора:

t=–(RPOT1 + R12)x C6 xln(VREF/Vz) (1)

где t — время разряда конденсатора, RPOT1 — сопротивление переменного резистора, VREF — внутреннее опорное напряжение (0,6 В), VZ — напряжение на стабилитроне (3 В).

В устройстве используется переменный резистор 25 кОм с линейной зависимостью сопротивления от угла поворота. Время разряда лежит в пределах от 3,53 до 7,56 мс, время полного разряда должно быть меньше 10 мс, так как используется синхронизация с сетью.

Диаграмма работы преобразователя представлена на рис. 4.

Термостат на PIC контроллере
Рис. 4. Преобразование значения переменного резистора

Подключение термостата 24 В

Схема подключения термостата обозначается в паспорте на конкретное устройство заводом изготовителем.

Для примера можно показать порядок подключения термостата на Ардуино, на выше обозначенной схеме:

  • Красный цвет, терминал Р, клемма питания переменного тока 24 В. Нередко можно найти 2 красных кабеля RH и RC. В этом случае, оба питаются напряжением 24 В переменного тока, и можно использовать их для отдельного включения тепла и охлаждения.
  • Черный цвет, терминал С, это общее заземление.
  • Белый цвет, терминал В, эта клемма для подачи сигнала на включение теплоносителя.
  • Желтый цвет, терминал Y, эта клемма, которая включает циркуляционный насос.
  • Оранжевый цвет, терминал О, здесь клеммы O и B взаимодействуют с обратным клапаном. Обратный клапан контролирует поток холодной воды в обратном трубопроводе, через подмешивание его с горячим подающем теплоносителем. Таким образом, регулируется температура теплоносителя на нагревательных приборах.
  • Синий, терминал B, аналогичен клемме O, но для подачи тепла. Очень часто можно увидеть, что эти два терминала объединены в один с надписью O/B.
  • Зеленый терминал G, эта клемма управляет вентилятором источника нагрева.

Датчики DS18B20

  • Диапазон измеряемых температур: -55 … + 125° C
  • Разрешение: 0,1° C
  • Калибровка не требуется, датчики калибруются в процессе производства, точность ± 0,5° C (в диапазоне от -10 до 85° C)
  • Частота измерения примерно каждые 3 секунды
  • Датчики подключаются трехжильным кабелем (внешнее питание)
  • Выводы (на рис. ниже) GND — синий, линия данных 1-Wire — зеленый, VDD — оранжевый

Термостат на PIC контроллере

Также возможно подключение датчиков двумя проводами (паразитное питание)

Обратите внимание, что температура выше 100° C не может быть измерена с помощью паразитного питания

Термостат на PIC контроллере

Программа микроконтроллера позволяет комбинировать оба варианта питания датчиков.

Паяльный фен YIHUA 8858
Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

Подробнее

Подберите сопротивление резистора PULLUP (от 4K7 до 1K) в соответствии с длиной кабеля. Экранированный телефонный кабель (длиной 45 м), как на рисунке выше, с резисторами PULLUP сопротивлением 1 кОм работает надежно.

Дисплей, управление, меню

Термостат работает во всем температурном диапазоне датчиков: от -55 до 125° C с разрешением до одного десятичного знака. Однако отображение на 3-х значном дисплее имеет некоторые ограничения. Температуры ниже -9,9 и выше 99,9° C отображаются без десятичных знаков.

Если датчик выходит из строя (нарушение связи, CRC не соответствует), вместо температуры будет отображаться ошибка , а выход A3 будет иметь высокий уровень. Количество пунктов меню определяется количеством найденных датчиков (при поиске).

Режим анимация всегда запускается при включении термостата. Температура каждого датчика отображаются одна за другой. Перед показом каждой температурой сначала отображается номер датчика, примерно 1,5 сек, а затем 5 сек температура.

Номера датчиков от 10 до 15 отображаются в формате HEX, то есть латинскими буквами от A до F. Если подключен только один датчик, то анимация отсутствует и отображается только его температура и пределы.

Нажмите любую кнопку, чтобы переключиться в ручной режим просмотра. Что касается датчика, то это 3 пункта меню: температура, верхний предел, нижний предел. Используйте кнопки TIP / TIM для прокрутки (вперед / назад) в круговом меню.

Популярные статьи  Гидравлический экскаватор из шприцов своими руками

Используйте кнопку TIP или TIM для перемещения пункта меню. Пока кнопка нажата, отображается заголовок, пока она не будет отпущена, далее отображается соответствующее значение. Постоянное удерживание TIP / TIM приведет к прокрутке заголовков.

Если нам нужно посмотреть заголовок текущего отображаемого значения, то удерживайте кнопку TlS.
Если при отображении предела удерживать кнопку S в течение некоторого времени, то начнется его изменение.

И когда на дисплее отображается температура, удерживание кнопки TlS в течение более длительного времени вернет анимацию.

Цифровой терморегулятор

Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.

Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.

При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.

Используется во многих технологических процессах, в том числе и для бытовых отопительных систем. Фактором определяющим действие терморегулятора, является наружная температура, значение которой анализируется и при достижении установленного предела, расход сокращается либо увеличивается.

Терморегуляторы бывают различного исполнения и сегодня в продаже достаточно много промышленных версий, работающих по различному принципу и предназначенных для использования в разных областях. Также доступны и простейшие электронные схемы, собрать которые может любой, при наличии соответствующих познаний в электронике.

Механический термостат

В электроплитах и нагревателях используется резистивный нагревательный элемент. Для управления нагревом используется механический термостат, который может подавать напряжение на нагревательный элемент в течение заданного времени. Он работает следующим образом:

  1. Электрический контакт образуется между двумя проводниками. Для их размыкания используется биметаллическая пластина.
  2. Коммутируемый ток протекает через биметаллическую пластину, вызывая ее нагрев.
  3. При определенной температуре пластина изгибается и соединение размыкается.
  4. После размыкания происходит охлаждение пластины и цикл повторяется.

Для управления частотой повторения используется специальный винт, с помощью которого изменяется предварительная сила сжатия контактов. Обычно на головке винта имеется ручка для выставления температуры или мощности. Ясно, что такая уставка не может быть точной. Кроме того, в процессе работы изнашиваются как сами контакты (обгорают), так и биметаллическая пластина в следствие постоянного температурного расширения-сжатия. Все это очень сильно сказывается на долговечности металлических термостатов.

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

↑ Конструкция и детали цифрового термостата

Термостат на PIC контроллереТермостат на PIC контроллереТермостат на PIC контроллереТермостат на PIC контроллере

Термостат на PIC контроллере

В крышке холодильника была установлена новая заглушка, в месте, где должен быть световой индикатор в более дорогих моделях холодильников данной серии. Вот как раз и используем заготовленное заводом пространство.

Выпилил окошки и отверстия в заглушке. Хорошо, что у меня завалялся кусок лицевой затемняющей панели от спутникового тюнера!

Термостат на PIC контроллереТермостат на PIC контроллере

Все эти кусочки пластика я посадил на термоклей. В итоге вышла довольно симпатичная лицевая панель.

Термостат на PIC контроллере

Проводку от платы подключил к контактным клеммам возле компрессора, в соответствии со схемой холодильника. На фотографии видно, что моему холодильнику реально пора на пенсию, но речь не об этом.

Далее прикрутил платы на платформу от крышки.

Термостат на PIC контроллере

Датчик DS18B20 протащил через отверстие на задней стенке холодильника, через которое входит фреонная трубка на испаритель внутри камеры. Провёл кабель вдоль короба от термостата и вывел наружу. Заодно и исправил косяк мастеров с лампочкой, которые как выяснилось, криво надели клеммы на патрон от лампы, эх. Но не будем о грустном.

Термостат на PIC контроллере

Погонял систему в таком опасном открытом виде пару дней, дабы убедиться, что всё работает. После сделал гидроизоляцию платы управления, залив плату термоклеем в области микроконтроллера и надел крышку.

Термостат на PIC контроллереТермостат на PIC контроллере

Управление и настройка инкубатора

При первом нажатии кнопки меню регулятор переходит в режим установки температуры, о чём свидетельствует МИГАНИЕ ТОЧКИ кнопками плюс или минус устанавливаем температуру, которую нужно поддерживать в инкубаторе по умолчанию стоит 37,4 градуса.

При втором нажатии кнопки меню устанавливаем гистерезис разницу между включением и отключением. Можно установить в приделах от 0 до 0,9 градуса. По умолчанию стоит 0,1 (нагреватель отключается например при достижении температуры 37,4 включается при температуре 37,3) режим отличается буквой «Г» в четвёртом разряде.

Следующее нажатие кнопки меню переходим в режим установки коррекции показания датчика температуры DS18B20, пределы установки от -0,9 до 0,9 соответственно, если -0,1 вычитаем 0,1 градуса от считываемого с датчика значения. По умолчанию это значение 0,0.режим отличается маленькой буквой «с» в четвёртом разряде.

Четвёртое нажатие кнопки меню переходим в режим установки паузы между включения двигателя поворота лотков. Время устанавливается в минутах, максимальное значение 999 минут. Режим отличается буквой «Н» в четвёртом разряде.

Пятое нажатие кнопки меню переводит регулятор в режим установки времени работы двигателя, задается в секундах. Максимальное значение 999 секунд. Режим отображается большой буквой «С» в четвёртом разряде.

Популярные статьи  Как сделать творог из молока - секреты технологии изготовления и особенности лучших рецептов

Шестое нажатие кнопки меню переводит регулятор в рабочий режим с сохранением всех изменений в энергосберегающую память контроллера. В общим сохраняются все настройки, которые вы сделали. И инкубатор готов к работе.

Термостат на PIC контроллере

  Особо тут рассказывать нечего.

Из плюсов данной схемы. Простота сборки. При достижении температуры на датчике 40 градусов питание схемы отключится, и инкубатор выключится полностью. Для включения инкубатора необходимо передёрнуть шнур питания

Из минусов. При обрыве либо любой другой неисправности датчика инкубатора нагреватель не отключится! Неудобное меню настройки параметров работы инкубатора.

Термостат на PIC контроллере

Рисунок печатной платы. Индикатор ставится со стороны печатных проводников (индикатор управления инкубатором) Тут же на рисунке изображена и плата для измерителя влажности. (индикатор измерителя влажности ставится с лицевой стороны платы ) Схема инкубатора и схема измерителя влажности, были взяты из разных источников, поэтому это две разные независимые схемы, которые объединены в одну, только на печатной плате.

Термостат на PIC контроллере

  Управление влажностью инкубатора производится, большим или меньшим открытием вентиляционных отверстий в инкубаторе, либо большим, меньшим добавлением воды в латок с водой. Других способов управления влажностью в инкубаторе нет.

Настройка температуры, точность датчика температуры, и управление двигателем лотка переворота яиц. Всё это настраивается в соответствующем меню с помощью кнопок + —

Для тех, кто будет прошивать МК серии PIC для облегчения подключения программатора к МК, вот вам распиновка выводов МК серии PIC.

Термостат на PIC контроллере

P.S. Если в рисунке схемы найдёте ошибки, ориентируйтесь по печатной плате, они 100% рабочие печатки (проверено неоднократным повторением схемы).

Автором схемы инкубатора и прошивки для него является: Оспанов Е.М.

Автором схемы измерителя влажности и прошивки для него является: Колтуник Ю.Ю.

Ссылка на страничку сайта автора измерителя влажности. http://www.kondratev-v.ru/izmereniya/elektronnyj-gigrometr-dlya-inkubatora.html#comment-2343

Что ещё сказать. По поводу целесообразности самостоятельной сборки, подобного инкубатора с нуля. Это спорный вопрос. Так как на том же Али экспресс , готовый терморегулятор W1209 , стоит как, одна МК PIC16F628A.

СтатьяСкачать

Видео о постройке инкубатора.

↑ Результаты проделанной работы

На мой взгляд, выглядит всё круто и аккуратно. Мама очень довольна изобретением и боится нажимать на кнопки, что бы без привычки ничего не сломать.

Выставил температуру в +4,5° и гистерезис в 1,5°. Итого вышло, что холодильник включается при +6° и выключается при +3°. По времени вышло, что компрессор работает 10 минут и отдыхает 55 минут, а это 0,15 рабочего времени. В Интернете сказано, что диапазон соотношение цикла работы/отдыха в 0,2-0,9 считается нормальным. Думаю, моя цифра показывает, что экономия электроэнергии находится на высоком уровне.

Это был интересный опыт в решении данной проблемы, которая возникает у многих владельцев старых холодильников.

РЕГУЛЯТОР НА МИКРОКОНТРОЛЛЕРЕ ДЛЯ ПАЯЛЬНИКА

   Хорошая пайка радиоэлементов является залогом успешной работы собранного устройства. Качество пайки определяется по характерному блеску. Сероватая и неровная пайка является потенциальной причиной плохой работы схемы. Другая важная задача заключается в том, чтобы произвести пайку не перегревая компонентов. Предлагается проверенная схема кнопочного регулятора температуры сетевого паяльника, с визуальной индикацией установленной мощности на светодиодном цифровом индикаторе.

Схема регулятора для паяльника

Термостат на PIC контроллере

   Как в процессе работы оценить на каком уровне мощности работает паяльник? Кто-то оценивает достаточность мощности по положению колпачка регулятора, но мы предлагаем собрать регулятор с цифровой индикацией и кнопочным управлением. Предлагаемый регулятор собран на основе популярного контроллера PIC16F628A. Тактирование микроконтроллера осуществляется встроенным генератором на частоте 4 МГц. На плате предусмотрены посадочные места под кварцевый резонатор, что позволяет применять и другие МК без внутреннего тактирования. На плате предусмотрена установка индикатора с общим анодом, путем перепайки соответствующей перемычки. В исходниках программы есть заготовки под контроллер PIC16F628A и LED индикатор с общим анодом.

Термостат на PIC контроллере

   Одной кнопкой увеличиваем уровень мощности и температуру нагрева паяльника, другой – снижаем. Задержки, определяющие уровень мощности, подобраны экспериментально. Их можно легко изменить в программе и подобрать для себя необходимые уровни. Всего 10 уровней. Символ «0» на индикаторе означает, что симистор закрыт. Символ «9» означает, что симистор постоянно открыт и устройство работает на полную мощность. Для проверки работоспособности регулятора мощности можно подключить лампу накаливания.

Термостат на PIC контроллере

   После сборки и успешного запуска, пришла мысль объединить два блока (второй для низковольтного паяльника на 12 В). На фотографиях вы видите электронный трансформатор Tashibra 220-12 в центре корпуса. И вот что получилось:

Термостат на PIC контроллере

Термостат на PIC контроллере

Термостат на PIC контроллере

Термостат на PIC контроллере

Термостат на PIC контроллере

   В настоящее время пользуюсь данным регулятором почти год, работает без перебоев. Как более простой вариант — можно взять схему обычного тиристорного регулятора. Схема была впервые опубликована на radiokot.ru, сборка и фото — sterc.

   Форум

   Обсудить статью РЕГУЛЯТОР НА МИКРОКОНТРОЛЛЕРЕ ДЛЯ ПАЯЛЬНИКА

Виды

Металлоискатель своими руками

В простейшем варианте (реле холодильника) применяют механический переключатель. Для более точной регулировки (обороты двигателя) используют не только микроэлектронику, но и специализированное программное обеспечение.

Терморегулятор на трех элементах

Чтобы сделать простой терморегулятор своими руками схема для блока питания персонального компьютера подходит лучше других вариантов.

Термостат на PIC контроллере
Регулятор вентилятора для компьютерного БП

Термистором измеряют температуру в контрольной точке. Потенциометром устанавливают оптимальное значение для включения вентилятора. Изменять обороты данная схема не способна. Подключает индуктивную нагрузку MOSFET транзистор. Допустимо применение аналога с подходящими силовыми характеристиками.

Терморегуляторы для котлов отопления

Регулятор температуры своими руками можно сделать в рамках проекта модернизации старого котла. Не имеет значения вид топлива, хотя проще обеспечить хороший результат с применением газового оборудования.

Термостат на PIC контроллере
Схема термостата с индикацией показаний на LCD экране

Цифровой терморегулятор

В этом примере разработчики создавали устройство поддержания температурного режима в хранилище фруктов (овощей). Для анализа поступающих данных выбрана микросхема со следующими блоками:

  • таймеры;
  • генератор;
  • два компаратора;
  • модули обмена, сравнения и передачи данных.

При соответствующем положении переключателей светодиодная матрица показывает актуальное значение температуры или контрольный уровень. Кнопками в пошаговом режиме устанавливают нужный порог срабатывания.

Термостат на PIC контроллере
Схема с регулировкой гистерезиса

Оцените статью
Денис Серебряков
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Термостат на PIC контроллере
Жакет и шапочка для малыша