Солнечная панель в стеклянном корпусе

Преимущества Double-Glass солнечных панелей

  1. Стекло устойчиво по своим эксплуатационным качествам, почти не стареет. Оно абсолютно непроницаемо, поэтому является влагостойким – это лучший выбор для регионов с высокой влажностью. Влага и кислород не могут проникнуть в такие панели, следовательно, процесс старения модулей практически не происходит.
  2. Повышенная надежность и долговечность.  Двойная стеклянная панель без защитного листа сзади хорошо отводит тепло, а ее эффективность в течение периода эксплуатации снижается медленнее, чем у традиционных панелей примерно на 30%. Вот почему на модули Double-Glass производители обычно дают гарантию 30 лет, а сами панели генерируют на 25% больше энергии.
  3. Увеличение срока службы с 20-25 до 30 лет влечет за собой снижение уровня себестоимости электроэнергии при использовании солнечных панелей Double-Glass. Стеклянная солнечная панель вырабатывает больше электричества в течение более длительного периода времени благодаря гарантированно высокой производительности и большему сроку службы. 
  4. Повышенная прочность. Double-Glass модули имеют лучшую устойчивость к физическим и механическим нагрузкам. Так, когда солнечные панели стандартного типа подвержены воздействию ветра, снега, града или других факторов, они изгибаются. В результате образуются микротрещины, что снижает эффективность работы панели. В модулях Double-Glass листы стекла сзади и спереди имеют одинаковую толщину, в середине, в нейтральном слое не возникает сжимающее или растягивающее напряжение. Это означает, что встроенные солнечные элементы оптимально защищены от механических воздействий.
  5. Устойчивость к химическим реакциям. Стекло не вступает в реакцию со многими химическими веществами и с элементами окружающей среды. Именно поэтому вино, предназначенное для хранения на сотни лет, разливают в стеклянные бутыли. Благодаря такому свойству этого материала между листом стекла и фотоэлементами или эпоксидной смолой, которая удерживает панели вместе, не будет происходить никаких химических реакций.
  6. В Double-Glass передний и задний листы стекла имеют одинаковые показатели теплового расширения, значит, они расширяются и сжимаются с одинаковой скоростью. Таким образом, солнечные элементы в панелях Double-Glass подвергаются меньшему стрессу и деформации в горячих или холодных условиях.
  7. Практически полное отсутствие PID –  деградации, которая вызывается разностью потенциалов. Это еще одно преимущество солнечных панелей с двойным стеклом в сравнении со стандартными батареями. В стандартных солнечных панелях PID может привести к снижению их производительности на 30%. Причиной являются паразитные токи в модулях, особенно те, которые имеют потенциал относительно земли. Эффект усиливается проникновением влаги и температурой. Поскольку двойное стекло может изолировать влагу с обеих сторон, солнечные панели с двойным стеклом практически не подвержены такой деградации.
  8. Класс огнестойкости двойного стекла выше в сравнении с обычными панелями, поэтому при пожаре изменения будут менее значимыми, особенно если панели установлены на крыше.
  9. Двухслойное стекло лучше защищает фотоэлемент от механических повреждений при монтаже и транспортировке. Поэтому при использовании Double-Glass вероятность появления микротрещин на фотоэлементах к моменту запуска гелиоустановки существенно снижается.  
  10. Напряжение в системах, где используются панели Double-Glass, составляет до 1500 В (в традиционных модулях до 1000 В). Это помогает снизить итоговую стоимость гелиоэлектростанции при выборе более высокого рабочего напряжения солнечной панели (за счёт стоимости проводов, сетевого инвертора и т.п.).
  11. В солнечных панелях Double-Glass не используются рамы, профили, поэтому нет необходимости в заземлении. 
  12. Полностью гладкая стеклянная поверхность обеспечивает только один  коэффициент расширения за счет использования лишь одного материала. Стеклянная поверхность хорошо чистится, с нее легко смывать грязь, на ней не размножаются микроорганизмы, например, не растет мох.

Сегодня панели с двойным стеклом получили широкое распространение во всем мире и широко применяются в промышленности, быту и сельском хозяйстве. Double-Glass модули – отличное решение для того, чтобы удовлетворить постоянно растущие требования динамичного развития отрасли гелиоэнергетики и помочь ее развитию в будущем. 

Область применения

Сегодня отсутствуют ограничения на использование солнечных батарей. Это обусловлено их преимуществами, в частности, выработкой достаточного количества электроэнергии для энергообеспечения всего объекта или решения локальных проблем (применения в качестве элемента питания и пр.). Освещение – это пока основное направление применения таких модулей. Реже их используют для обогрева, причем в большинстве случаев солнечные батареи обсуживают малогабаритные объекты. Их применяют:

в частных и многоквартирных домах;

Применение солнечных батарей в многоквартирных домах

коммерческих зданиях;

Использование солнечных панелей на промышленных зданиях

Солнечная энергетика в аграрном секторе

на придомовой территории.

Крытый навес из солнечных панелей

Условия, при которых предпочтительно устанавливать такие модули:

  • для обогрева/освещения местности, где отсутствуют ЛЭП, в данном случае применение преобразователей солнечной энергии позволит сократить затраты на энергообеспечение объекта, это более выгодный метод, если сравнивать с применением дизельных генераторов;
  • в некоторых многоквартирных домах, построенных за последние годы, использовался альтернативный источник энергии (в системах водоснабжения) или в качестве резервного;
  • в местности (селах, деревнях) время от времени случается отключение электричества, такие модули позволяют обеспечить бесперебойную работу техники.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью — найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Популярные статьи  Как сделать подставку для цветов своими руками - для подоконника, напольную, уличную, интересные фото идеи

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные — из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы — как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

Монтаж солнечных батарей

К установке солнечных батарей не применяется жестких требований. Смонтировать гелиоприемник можно под наклоном, на вертикальной или горизонтальной поверхности. При этом жесткие панели (моно- и поликристаллические) устанавливают на жесткий каркас, фиксируют в местах крепления при помощи комплектного крепежа. Батареи на эластичной подложке допускают укладку на неровные поверхности (например, волнистую крышу).

Соединения между панелями осуществляют многожильными проводниками с оконцевателями. Сечение токоведущих элементов рассчитывают по величине номинального и максимального тока.

Этого можно достичь:

  • Ориентировкой модулей в южном направлении.
  • Размещением их под углом, равным географической широте местности.

Кроме того, для монокристаллических панелей критически важно позаботиться об отсутствии затенения – при рассеянном свете их эффективность сильно падает

Использование разметочной подложки для компонентов теплового радиатора

Основу необходимо выполнять с применением листа фанеры с маркировкой уголков. После процесса пайки на каждый компонент с его обратной стороны крепится кусочек монтажной ленты. При этом стоит прижать заднюю панель к скотчу и каждый компонент перенесется.

Для подложки используется лист фанеры.

Монтажная лента используется для крепежа с обратной стороны теплового компонента. Данный тип крепления не предполагает дополнительную герметизацию самих элементов, их можно свободно расширять под воздействием температурных показателей, что не приводит к повреждению теплового радиатора и разрыву контактов и прочих компонентов конструкции. Только лишь соединительные части устройства восприимчивы для герметизации. Подобный тип крепления больше всего подходит для наиболее опытных образцов, однако долгосрочное использование в полевых условиях не гарантируется.

Этапы сборки батареи:

  1. Выложите компоненты на стеклянную плоскость. Между ними обязательно должна быть определенная дистанция, благодаря чему возможно свободно менять размеры, не нанося вреда общей конструкции. Компоненты прижимаются грузами.
  2. Прежде чем приступать к пайке нанесите припой и флюс, а после тщательно припаяйте серебряные контакты (данный принцип необходимо использовать для соединения абсолютно всех солнечных компонентов).
  3. Пайку необходимо сделать следующим образом: «плюсовые» токоведущие дорожки размещаются на лицевой стороне компонентов, в то время как «минусовые» — на их обратной стороне.
  4. Контакты крайних компонентов выводятся на шину («плюс» и «минус»). Для шины применяют более широкий проводник из серебра.
  5. Рациональным будет вывести «центральную» точку, с помощью которой ставят два вспомогательных шунтирующих диода.
  6. Клемму необходимо монтировать также с наружной стороны рамы.

После пайки каждой из групп компонентов проводите тестирование

Обращая внимание на профессиональные фотографии на различных строительных сайтах, можно заметить, что некоторая область стола под солнечными компонентами вырезана. Это было сделано специально для того, чтобы определить функциональность электрической сети по завершению процесса пайки контактов

Популярные статьи  Столярные тиски с расширенным диапазоном своими руками

Область применения солнечных панелей

Стационарные панели

Солнечные панели могут использоваться как в стационарных условиях, так и быть переносными.

Фиксированные модули применяются в следующих областях:

  • на солнечных электростанциях;
  • в автономных, резервных или гибридных электростанциях для дома или дачи;
  • для обогрева помещений и нагрева воды (солнечный коллектор);
  • в автономных системах освещения улиц;
  • для питания рекламных щитов;
  • в системах навигации и сигнализации;
  • в насосных станциях и др.

Рассматривая стационарные солнечные электростанции, остановимся подробнее на тех, которые используются для электроснабжения дома. Чтобы обеспечить жилище электричеством с помощью энергии Солнца, понадобятся следующие комплектующие:

  • солнечные модули;
  • аккумулятор (для накопления неизрасходованной энергии);
  • контроллер напряжения (увеличивает срок службы аккумулятора, но не обязателен для установки);
  • инвертор (преобразует постоянный ток аккумулятора в необходимый переменный ток для электроприборов).

Домашние солнечные электростанции по отношению к централизованному электроснабжению могут быть:

автономные.

Автономные, т.е. независимые от других источников питания, солнечные электростанции используются там, где невозможно по определенным причинам (значительная удаленность от населенных пунктов) подключение к общей электросети. Их использование целесообразно в южных районах, где длиннее световой день и большое количество ясных дней. В любом случае ее желательно продублировать генератором на горючем топливе. Основные преимущества автономной станции – это ее экологичность, бесшумность, минимальное техническое обслуживание в течение эксплуатации. Минус – ночью или в пасмурные дни электроэнергия вырабатываться не будет. Кроме того для их работы необходимы выше названные комплектующие, которые делают автономную систему довольно дорогой.

резервные.

Резервные, или сетевые, электростанции устанавливаются там, где есть подключение к центральной электрической сети. Она используется, как дополнительный источник электроэнергии. Резервная солнечная электростанция начинает свою работу в случае перерыва подачи электроэнергии от сети. Преимущества – бесшумность, надежность, возможность монтажа на крышу или фасад здания. Также плюсом является отсутствие аккумулятора, контроллера и инвертора, что значительно удешевляет систему.

гибридные.

По сути, представляет собой автономную станцию, подключенную к электрической сети. Энергия, полученная от Солнца, используется в первую очередь, при ее нехватке подача электроэнергии идет уже от централизованного электроснабжения. Позволяет значительно экономить на платежах за потребленную электроэнергию.

Мобильные модули

Мобильные устройства по преобразованию энергии Солнца в электрический ток могут применяться:

  • для зарядки мобильных телефонов и других мобильных устройств;
  • для питания радиоприемников во время походов, рыбалки;
  • для питания систем навигации во время экспедиций;
  • для освещения в темное время суток во время походов.

Портативные батареи стали незаменимым аксессуаром у любителей загородных поездок и туристов, путешествующих по диким местам, в которых отсутствует электричество. Так как современная жизнь даже на необитаемом острове или в горах невозможна без различных гаджетов, их подзарядка производится от зарядных устройств, преобразующих солнечную энергию. Портативные солнечные батареи чаще всего выпускаются на основе монокристаллического кремния. Они различаются размерами, формой, мощностью. Компактные батареи с небольшой мощностью могут поместиться в кармане, а большие и мощные  могут быть установлены на крыше автомобиля. Кроме того они снабжены всевозможными переходниками для подключения различной техники.

Устройство солнечных батарей

Солнечная батарея – это набор фотоэлементов. Эти полупроводниковые (фотоэлектрические) устройства, объединенные в панели, преобразуют энергию солнечных лучей непосредственно в постоянный ток.

Конструктивно гелиопанель (она представлена схематически ниже на фото) в общем виде состоит из следующих частей:

  • рамки;
  • стеклянного покрытия;
  • фотоэлементов;
  • токопроводящих металлических контактов;
  • основы (обратной стенки);
  • пленки из полимерного материала.

Устройство гелиопанели

Корпус (рамка, основа, стеклянное покрытие) предназначены для фиксации фотоэлементов, защиты их от разрушительного воздействия внешней среды. Каркасные детали изготавливают из диэлектрических материалов. Фотоэлементы к корпусу крепятся таким способом, чтобы их замена была возможной.

Фотоэлектрические преобразователи (ФЭП) на сегодняшний день изготавливают из различных химических элементов. Но широкое промышленное распространение получили кремниевые фотоэлементы. Эти пластины состоят из двух, отличающихся физическими свойствами, слоев кремния.

Кремний – это полупроводник. Каждый слой батареи имеет свои особенности:

  • внешний слой фотоэлектрического преобразователя содержит избыточное количество электронов (n-слой) – выступает в роли катода (отрицательного полюса);
  • во внутреннем слое электронов не хватает (p-слой) – является анодом (положительным полюсом).

В результате неоднородности (разного типа проводимости) кремниевых полупроводниковых слоев ФЭП между ними устанавливается р-n переход. Возникает электронно-дырочная проводимость.

Неоднородность слоев фотоэлемента достигается несколькими способами:

  • добавлением в один и тот же полупроводниковый материал разнообразных примесей (легирование);
  • соединением разных по свойствам полупроводников;
  • изменением состава;
  • комбинированием нескольких способов.

Коэффициент полезного действия (КПД) заводских ФЭП в среднем составляет 16 %. Эффективность лабораторных моделей достигла почти 45 %. Идет процесс усовершенствования гелиопанелей.

Корпус

Важным элементом любой солнечной панели является ее каркас. Он должен обладать несколькими качествами:

  1. долговечность;
  2. легкость;
  3. стойкость к температурным воздействиям;
  4. стойкость к метеоусловиям;
  5. прочность;
  6. невысокая цена.

По сочетанию всех указанных качеств пока нет конкуренции алюминию, поэтому именно из него делают каркасы 90% панелей как фабричного, так и кустарного производства.

Фотоэлементы в панели защищаются прозрачным материалом и выбор его не всегда очевиден. Важными факторами являются цена, % светопропускания и масса.

  • Оргстекло. 92% пропускания света, низкая масса и сравнительно невысокая стоимость. Солнечные панели с оргстеклом получаются легкие и прочные, однако в летнее время оргстекло практически не отводит тепло и деформируется от температуры. В итоге батарея с оргстеклом выходит из строя за один летний сезон. Стоимость 36$ м.кв. за 6 мм стекло.
  • Поликарбонат. Дешевле оргстекла, не деформируется, 90% пропускания цвета, очень легкий. Несмотря на свои достоинства, применение его в солнечных панелях нецелесообразно, т.к. он мутнеет от температурных перепадов и перестает пропускать свет в необходимом количестве. Стоимость 4,26$ м.кв. 8 мм поликарбонат.
  • Стекло. Тяжелое, хрупкое, о обладает высокой светопропускной способностью (до 98%), которая обратно зависит от толщины. Стекло является самым популярным материалом защиты фотоэлементов в солнечных панелях только из-за его дешевизны и высокой светопропускной способности. Стоимость 3$ м.кв за 6 мм стекло.
Популярные статьи  Ремонт импульсного блока питания

Важным элементом также является клей, с помощью которого фотоэлементы крепятся к стеклу. Фотоэлементы должны быть приклеены только специальным составом. Нарушение этого правила приводит к тому, что через несколько месяцев эксплуатации герметичность нарушается, солнечные батареи деформируются или клей мутнеет, не пропуская света.

Важно. Нельзя использовать эпоксидный  клей

Через 2 месяца на солнце он пожелтеет и перестанет пропускать свет к фотоэлементам. На морозе эпоксидный клей потрескается и может привести в негодность всю панель

Конструкция двойных стеклянных солнечных панелей (BIPV).

Конструкция прозрачной двойных солнечных панелей из монокристаллических и поликристаллических ячеек отличается только типом ячеек.

Структура прозрачной двойной солнечной панели:
1. закаленное листовое стекло высокой пропускающей способности;
2. лист полиэтилен-винил-ацетата (PVB);
3. солнечные ячейки;
4. лист полиэтилен-винил-ацетата;
5. закаленное листовое стекло высокой пропускающей способности.

Это позволяет конструировать размер и форму солнечные панели (BIPV) согласно фактическому требованию, для того чтобы идеально интегрировать в дом. Помимо своего стандартного предназначения в качестве атрибута крыш и наземных площадок, такие панели могут быть использованы, как основная поверхность стены, забора, навеса, могут стать отличной альтернативой оконным стеклам, либо сердцем архитектурной композиции — этот вопрос мы оставляем на ваше усмотрение. Отметим только одно — прочность этих панелей достаточна для того, чтобы взрослый человек мог спокойно стоять на их поверхности (несущая способность составляет 5400 Па).

Солнечная панель в стеклянном корпусе

  1. Главная
  2. Статьи
  3. Двойные прозрачные солнечные панели

Солнечная панель из диодов

Для изготовления панели можно использовать диоды в металлических и стеклянных корпусах. Первый вариант мощнее, но более трудоемкий. Второй — проще, хотя для достижения такой же мощности понадобится больше элементов.

Панель из диодов в металлическом корпусе

Солнечная панель в стеклянном корпусеДиоды КД203

Если говорить о максимальной мощности, которую можно получить с одного кристалла полупроводника, то лучшими в этом отношении будут диоды серии КД203 (КД2010).

При ярком солнечном свете один кристалл способен выдать напряжение порядка 0.7 В при токе до 7 мА.

Чтобы вынуть кристалл кремниевого полупроводника и «открыть» его для освещения, надо:

  • аккуратно разбить керамику и освободить верхний контакт;
  • раскрыть корпус, сняв с основания «крышку»;
  • разогреть диод до температуры плавления олова, которым к кристаллу припаяны контакты;
  • освободить от верхнего жесткого контакта кристалл, а вместо него припаять гибкий проводник.

Диоды средней мощности в металлическом или металлостеклянном корпусе серии Д7, Д214, Д215, Д226, Д237, Д242-Д247 разбирать проще. Сначала бокорезами обрезают жесткий контакт и часть корпуса в виде трубки со стороны анода. А затем вставив нож в шов между основанием и крышкой, открывают корпус. Для облегчения процесса можно предварительно слегка сжать фланец корпуса в тисках, чтобы раскрылась щель между основанием и крышкой.

И эту процедуру надо выполнить с каждым диодом, а их должно быть несколько десятков. В реальных условиях напряжение на одном кристалле будет ниже максимума раза в полтора — около 0.5 В. Чтобы получить на выходе 5 В, надо последовательно соединить в блок 10 кристаллов.

Приблизительно такое же соотношение максимальной и реальной силы тока — рассчитывать надо на величину 4-5 мА. Чтобы «нарастить» силу тока и повысить мощность солнечной батареи, надо параллельно соединить на панели несколько таких блоков.

Сама панель должна иметь вид решетки из расположенных в несколько рядов ячеек двух разных диаметров, расположенных поочередно. Большое отверстие — для посадки корпуса, меньшее — для гибкого проводника, которым соединяют в цепь расположенные рядом диоды. Такая заготовка для диодов в металлическом корпусе без крышки глядит так:

Солнечная панель в стеклянном корпусе

Возможны и другие варианты конструкции панели, но принцип прежний — последовательно-параллельное соединение элементов. Принцип как сделать солнечную батарею из диодов был описан еще в советское время. Ниже приведено фото иллюстрации тех времен, на которой показаны способы разборки элементов и принципиальная схема соединения:

Солнечная панель в стеклянном корпусе

Панель из диодов в стеклянных корпусах

Эти элементы менее мощные и способны «генерировать» токи менее одного миллиампера, но их достоинство в том, что кристалл полупроводника не надо «открывать».

К таким относятся диоды Д223Б, которые способны при оптимальной ориентации относительно яркого солнца выдавать напряжение около 0,3 В, что почти сопоставимо с более мощными аналогами.

Пошаговый процесс изготовления солнечной панели выглядит так:

  • помещают на некоторое время диоды в емкость с растворителем;
  • достают из растворителя элементы и счищают с них размягченную краску;
  • сгибают под 180° выводы анодов (это необходимо для правильного положения кристалла полупроводника относительно плоскости монтажной платы;
  • монтируют на монтажной плате элементы, объединяя их в последовательно параллельные группы согласно схеме соединения.

Вот так выглядит панель, состоящая из 9 параллельно соединенных блоков по 12 элементов в каждом:Солнечная панель в стеклянном корпусе
Как видно, помещенная на солнце, она выдает напряжение в 2.5 В, а ее мощности хватает, чтобы полностью зарядить за 2 часа ионистор емкостью 0,47 Ф.

Оцените статью
Денис Серебряков
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Солнечная панель в стеклянном корпусе
Как сделать макро объектив для камеры телефона